Reliability and validity of numerical and non-numerical order processing

Melanie Spindler¹, Trent Haigh¹, Gerrit Sommerauer¹, Ian M. Lyons², Roland H. Grabner¹ & Stephan E. Vogel¹,* ¹ Educational Neuroscience, Institute of Psychology, University of Graz, Austria

² Numerical Cognition Lab, Department of Psychology, Western University, Canada

Introduction

Background

- Numerical abilities are essential for academic achievement and life success in modern societies¹.
- An often overlooked but important property of numbers is ordinality: the relative position or rank (e.g., 4 comes before 5 but after $3)^2$.
- Although a link between ordinality and arithmetic ability is suggested^{3,4,5}, little is known about the reliability of numerical order processing and its precise relationship to mathematical achievement.

Research questions and hypotheses

- Numerical (symbolic and non-symbolic) and non-numerical (letters of the alphabet) order processing and their associations with arithmetic fluency were examined at two time points (T1, T2).
- A significant correlation between numerical order processing and • individual arithmetic test scores was expected for number symbols (Hindu-Arabic numerals).
- Number symbols were expected to explain unique variance in arithmetic fluency over and above non-symbolic numerical (dot-arrays) and symbolic non-numerical order (letters of the alphabet) processing.

Subjects

32 healthy right-handed adults (18 males, 14 females; mean = 23.53 years; range = 20 to 33 years)

Ordinality Task

- Hindu-Arabic numerals, dot-arrays and letters of the alphabet were presented on a computer screen (see Fig. 1).
- Subjects decided whether the presented triads were in-order (ascending/descending) or in a mixed-order.

Arithmetic Fluency

- 11 2 = Paper and pencil test of arithmetic fluency (AF) including multiplication, 8-4= subtraction and addition problems 8 + 3 =(see Fig. 2).
- Subjects had 90s/120s (easy/ difficult condition) per page to solve the tasks.

Figure 2: Calculation problems

Reaction Times Ordinality Tasks

Effects	<i>F</i> -value	df	<i>p</i> -value	η_p^2
Hindu-Arabic numerals				
Time-point	20.424	(1, 31)	0.001**	0.397
Order	51.933	(1, 31)	0.001**	0.626
Distance	33.529	(1.663, 51.539)	0.001**	0.520
Time-point x Order	0.300	(1, 31)	0.588	0.010
Time-point x Distance	4.240	(1.891, 58.611)	0.021*	0.120
Order x Distance	35.797	(1.956, 60.625)	0.001**	0.536
Time-point x Order x Distance	3.404	(1.802, 55.873)	0.045*	0.099

Analyses and Results

- For Hindu-Arabic numerals an Analysis of Variance (ANOVA) revealed a significant reverse distance effect (rDE) for in-order trials at T1, but not at T2; for mixed-order trials a canonical distance effect (cDE) was observed.
- For dot-arrays, the ANOVA revealed cDEs for in-order and mixedorder trials at T1 and T2.
- For letters of the alphabet, the ANVOA revealed a rDE for ordered stimuli, and a cDE for mixed-ordered stimuli at T1 and T2.

b) Dot-arrays 1300 1200 ີ 🖁 1100 1000 ti 900 **Ga**

D3

D2

D1

D1

D2

D3

D2

D3

D1

Pearson's correlations between T1 and T2 for mean reaction times and distance effects of the ordinal task conditions.

	Numbers	Dot-arrays	Letters
RT _{in order}	.734**	.727**	.732**
DE _{in order}	.373*	.425*	025

DE Dots	-14.955	85.048	-0.176	0.862	-0.035	0.220
RT Letters	-0.064	0.053	-1.195	0.243	-0.232	-0.476**
DE Letters	42.341	116.190	0.364	0.719	0.073	0.006
Constant	409.824	79.072				

*** p < 0.001; ** p < 0.01; * p < 0.05

The relationship between ordering of number symbols and arithmetic fluency. Circles represent data collected at T1; Diamonds represent data collected at T2.

** p < 0.01; * p < 0.05

Calculation of the distance effects: rDE = (meanRTD2,D3 - meanRTD1) / meanRTD1,D2,D3; and cDE = (meanRTD1 - meanRTD3) / meanRTD1,D3⁵.

Discussion

- Distinct behavioural signatures for symbolic (digits and letters) and non-symbolic numerical (dots) ordinality processing support the view that symbolic and non-symbolic ordinal processing engage different cognitive mechanisms.
- Numerical symbolic (digits) ordinality processing has a strong and reliable relationship with arithmetic fluency, and explains a unique portion of variance over and above numerical non-symbolic (dots) and non-numerical (letters) ordinal processing.
- This indicates that the processing of ordinality in numerical symbols is a fundamental property of arithmetic fluency.
- Overall, the present study indicates that the ability to process the ordinal relationship of numerical symbols is a strong and unique predictor of arithmetic fluency, and supports the idea of different cognitive mechanisms underlying this and non-symbolic ordinal processing.

